Home TA workshop

Inspiring stories

Communicating science can be easy when we target those who are already interested and have a desire to learn something new, but this isn’t always the case. There are many groups which don’t consider scientific knowledge a priority – one of which is teenagers, who are at the transition between childhood and adulthood, and overwhelmed by the many new distractions this brings.

Those who teach know that teenagers can be one of the most difficult groups to attract. To get their attention, one needs to engage and entertain them at the same time, but also communicate to them in a familiar way.

My colleague and I had been thinking about how to overcome these difficulties, as we wanted to ignite a love for Earth sciences even within this hard to reach group. Our solution was to prepare comics explaining some basics of seismology – a field of science which is a research focus of our institute.

The idea to use cartoons as a tool for education is not new. Actually, it has been widely used; just remember ESA’s famous Rosetta and Philae ‘Once upon a time…’ adventure to catch the comet. But as far as we were aware, there was not a dedicated comic for teenagers about seismology, or more precisely, about seismic wave propagation through our planet. So the plan was simple: let’s produce one!

However, our simple plan had one tiny problem. Neither of us had any experience producing comics or an artistic gift to draw. While there was the prospect that we could learn how to make comics, it was clear to us that we would never learn how to transform our fancy ideas into beautiful drawings. Therefore, from the beginning we knew we would need to ask for some professional help. We needed the services of a graphic artist and a scriptwriter. However, to include professionals in the team caused an additional problem, but luckily for us only a minor one. We needed money to hire them!

We started to search for money. Firstly, we asked our institute, but were rejected. There was no will to spend around €8,000 on such a project. We then went one step higher and asked the Czech Academy of Sciences, but ended up with the same result. This time the reason was that there was no money left for the fiscal year. At this point we started searching for external funding. We wrote emails and spoke with many organisations, but all of them gave us negative responses. They liked the idea, but because we were asking in the middle of the year, it was a bad time to get funding. But we weren’t ready to give up. So we tried another option – asking our friends and followers on social media. Surprisingly, this finally worked and our post reached someone willing to help us.

Once the funding was secured, we started to work. First we had to think up a story which would be attractive for readers, while at the same time explaining various processes occurring inside the Earth. It may sound simple, but it was not. How could we take processes occurring deep under our feet which cannot be seen by the naked eye, and turn them into something attractive? This seemed to be the big challenge. During our brainstorming sessions several ideas came out, but it soon became clear that we would need a character to describe these processes to the readers. Who would this be? The selection was simple, the only one who would actually “feel” these deep buried processes: a seismic wave.

But a seismic wave is just energy and therefore cannot speak. So we needed the wave to become a person, and that’s how our seismic “superhero” was born. We sharpened this idea together with the scriptwriter Lucie Lukačovičová, and the rest of the story was actually quite simple to write. We came up with the idea of two kids visiting a seismic monitoring station where they would encounter the P-wave, telling them a story about how she was born and ran through the entire planet. Of course, every good story needs a build-up of tension leading to the grand finale, and our comic is no exception. We needed a dramatic ending that would also educate our readers. We came up with one, but I don’t want to spoil the story, so you’ll have to read the comics to find out the ending!

However, writing the storyline was just part of the project, and to be honest it was the easier part. The real challenges were still ahead of us. How to draw the story, the personified seismic waves (yes, waves, the P-wave has a sister, S-wave, and two brothers, the surface waves), and how to visualize these awkward processes hidden from our sight. To draw the strange behaviour of ductile rocks within the mantle or the formation of the magnetic field within the outer liquid core was not easy. These were the challenges to deal with! We spent many hours with our graphic artist Karolína Kučerová, teaching here the basics of our field before we were able to find a solution. We knew that outreach requires some simplifications of real processes, but we still wanted to be as accurate as possible. Were we successful in that? Again, open the comics and judge for yourself on all the details there.

Once we had all the drawings ready it was a time to finish the dialogues. Before making this comic I assumed that dialogs were written before the drawings, but this project showed me otherwise. There was clearly a need to significantly modify the dialog to match the drawings. I found that much of the text could actually be removed as the drawing helped to describe the scene, and this was a great lesson for me.

So after several months of work, we turned our dream into a real comic printed on shiny paper. This was a relief, but not the end of the story. There were still two important jobs to be done. First was to promote our comic to the public. This is an aspect of science communication which we have a tendency to overlook, but it is one of the most important. Once you finish your project you have to make sure that people know about it. Therefore, we arranged an interview on national TV in which we presented this piece of art, produced a press release, and actively shared information with others who could spread the word. This post is actually part of that effort. Additionally, to support sharing, the comic has been released under the free Creative Commons license.

But what about the second task? The original comic was written in Czech, a language that is used by only 15 million people. This is a relatively small audience, and our ambition for this work is much greater. We want to offer an education tool which anybody can use, and this brings us to the need to translate our work. We recently finished the English version, which you can download here and this brings the comics to a much wider readership. However, this is not the end, and as not everybody speaks English our aim is to provide translations in many other languages, as many as our finances will allow. So if you are interested in seeing the comic in your own language, and you would be willing to translate, please let us know!

There are places on this Earth where people are really determined to learn about science. Really, really determined. They not only spend hours in queues, but also occasionally participate in proper fist-fights in order to win their way into a lecture room. Those magical places are comic-cons.

I have always been a nerd. I know The Silmarillion almost by heart, live according to teachings of Terry Patchett and follow Capitan Jean-Luc Picard nearly religiously. It should be no surprise to anyone that I have been attending comic-cons. At first, I was only listening: about the science behind the Teenage Mutant Ninja Turtles (we can mutate turtles, but they will most probably not turn into ninjas), about extinct fantastic beasts (gigantic spiders – yes, dragons breathing fire – no), and all about faeces (can you try to foretell the future from your own excrement? Yes, you can, but it works only if you are asking about your own health and have quite a lot of modern medical equipment handy). Lectures were usually given by other nerdy scientists: PhD students and full professors alike, who were combining their knowledge with their hobby to produce something that was both informative and entertaining. I wanted to be like them.

So, one year, 5 months before the event, I sent in an abstract and a short motivational letter to the comic-con, and was accepted. My first lecture was discussing what is scientifically correct and incorrect in the movie Armagedon. This topic is quite close to my hart, because I study impact craters and the environmental mess that they can induce on Earth. The one thing I will always remember from the evening of the presentation is a quite interesting-looking fight to get to the lecture room (Spiderman vs Conan the Barbarian – the latter won).

Lectures during a comic-con are among the most challenging outreach activities I have participated in (and I do a LOT of outreach). It needs to be understandable, engaging and entertaining for people of different ages (from early teenagers to people in their 70s), education levels and backgrounds. Luckily all those people have something in common that can be used during the presentation: their love and knowledge of sci-fi and fantasy culture. For example, probably they do not know much about impact craters, but they all are aware that Wakanda (a home of the Black Panther) was created thanks to the impact of a large vibranium meteorite. And this common comic-related base can be used to create a tale of real impact craters.

After a couple of years lecturing at comic-cons about space science I have been given large, 450 people rooms to fill and I have gained a very small but an absolutely heartwarming group of people who regularly enjoy my efforts. I have had a couple of long discussions after my lectures (e.g. 3-hour long deliberations about the habitability of planets known from sci-fi books and movies). Last but not least, as an invited first-level VIP, I have met (in a toilet) a couple of famous actors (flown to Poland from the USA). It was fun!

In previous Inspiring Stories we have read about doodling, active participation in science projects, and other examples of involving young people in science. Are there any other ways of engaging youth and attracting them to a career in science? Well, there are! And as one meme says: “Modern times require modern solutions.”

Communicating science to members of the public is an integral part of a scientist’s job, although the importance of this role has developed over the years. Mocking or disrespect directed towards those willing to communicate science is hopefully becoming a thing of the past. More and more scientists understand the importance of public and political interest due to limited funding and a lack of human resources. What has also changed are the tools to pass on the latest scientific findings. It’s common to write up press releases for media and let the journalist do their job. At best, some scientists are involved in co-hosting shows on radio or TV, although this is more common in English speaking countries.

Currently, media in general are going through a shift. With increasing distrust in traditional media and low interest in printed media and radio amongst young people there’s a need to adjust ourselves to new tools and ways to reach them. Platforms such as YouTube, Facebook, Twitter or Instagram are becoming the main source of information for young people whether we like it or not.

However, there’s a catch in moving onto different communication platforms. It is not only about migrating the original content, but creating completely new content which is more suitable to the demands of young people.

That’s exactly what I did two years ago, when my friends in the marketing industry convinced me to give it a try. At first I was l very hesitant, doubting my scientific achievements (there were close to none), and whether I was the right person to do this. And since you might be having the same thoughts, here’s what they told me: “Your senior colleagues may be more established and successful than you, but to a young person interested in science it is much more helpful to see somebody younger that they can more easily identify with.”

Emboldened by this, I started creating posts about space physics, my daily duties, struggles and facts related to how I progressed to my current career. I decided to use my native language for two reasons: First, there’s plenty of English content available so it would be very difficult to compete in terms of quality and second, I wanted to have as few obstacles as possible while trying to reach local audiences and bring them relevant, localised content as every education and cultural system has its own specific needs.

So far, it’s been a great success. Using humour and pop cultural references, I have built up a base of over 6000 followers, working with major TV stations and newspapers in the country and teaming up with various companies to create campaigns promoting science to the general public. The most recent campaign promoted by a telecommunications operator consisted of building a lab to grow plants in Mars-like conditions, and has already generated millions of views and the progress (fingers crossed, we haven’t had the first harvest yet) is being covered by both TV stations and newspapers.

So what are you waiting for? Sharing your passion for science and interesting things directly with others has never been easier. Post about your successes, your failures, little happy moments from the research and stories of how you got involved in science. And if you ever struggle (don’t worry, it’s also a trial and error learning process for me), feel free to drop me a message on Instagram. I’ll be more than happy to help!

As a scientist, have you ever experienced a situation when your friends or family were too embarrassed to ask you about your research? Have you ever asked yourself why that’s the case? Were they scared that they wouldn’t understand that top-notch research? Or do they not want to embarrass themselves by asking you ‘simple’ questions, and risk looking uneducated or asking something that may be obvious?

Because that’s exactly what happened to us, a group of PhD students finishing our respective studies in the Czech Republic. It was seven years ago when we decided to reverse the aforementioned situation and approached the problem of ‘question-asking shyness’ from the other end. We did not wait for questions, but instead wanted to proactively provide answers to our friends and families. The first event, named “Science is coming to your village”, took place in a small village deep in Eastern Bohemia.

About thirty friends and relatives came to hear what we were doing on that specific occasion. It was very satisfying to see how they were excited about our work. The complexity of the topics wasn’t an obstacle in any way; we were able to explain even complicated topics such as the vacuum or standard particle model. It was our small victory and motivated us for further work in this regard.

Presentation of gravitational wave observations by Prof. Podolsky (Charles University). Credit: Science to Go

So what happened next? The ‘Science to Go!’ project was founded! This project connects scientists who are sharing their passion for science with a broad audience open to listening. It was quite wild in those times when two or three people were organising everything, including communication with the host venue, presenters, and promotion. However, the idea was stronger than the difficulties that we encountered. We ended up with a concept of three talks by different speakers about their research. Every presentation typically takes twenty minutes with the final ten minutes being dedicated to an open discussion. Each of the three talks is ideally from a different scientific field. This concept ensures that 1) the speaker is an expert, 2) the audience is more likely to see a topic matching their interest, and 3) the length is acceptable.

We started with a monthly event at the municipal library in Prague. A typical event presents three young scientists – this format sometimes alternated with a bigger show featuring a well-established scientist. The highlight was a presentation of gravitational wave observations by Prof. Podolsky (Charles University) that was attended by more than four hundred people!

After two years we were forced to find a new venue for our events. We chose the Czech Scout Institute at the Old Town Square in Prague. They have been brilliant hosts and we’re still happily functioning there to this day. For our efforts, we were nominated for awards from the Czech Mathematics and Physics Society and the Czech Physics Society. We told ourselves that it was time to enlarge the organisation team and established ‘Science to Go!’ as a non-profit organisation. We accepted more than eight new core members, and a new era started. We created a division for social media and regional events.

Nowadays, the situation with COVID makes things a little complicated, as we are not able to host our events in person. But that doesn’t stop us! Every week, we broadcast a scientific talk on Facebook – one session on Mondays when the scientific concept is introduced, and then a followup Q&A session the following day where we engage with the audience and answer their direct questions online. While this has been working fantastically, we miss our regular attendees and are looking forward to meeting our audience in person again.

After more than six years in existence, the project has managed more than forty events across the whole country, visiting cities and even small villages. We have presented more than sixty scientists with their research.

Why are we different? Because we can come even to the smallest community and show top-notch science. Science to Go! is willing to continue and evolve. We are open to new enthusiastic people who want to communicate their research to anyone who listens.

Science to Go presentation at the Czech Scout Institute at the Old Town Square in Prague. Credit: Science to Go
Plate tectonics is the major geological concept to explain dynamics and structure of Earth’s outer shell, the lithosphere. In the plate tectonic theory, processes in the Earth’slithosphere and its dynamics are driven by the relative motion and interaction lithospheric plages. The regions on Earth that are most geologically active often correlate with the lithospheric plate boundaries. Thus, for explaining the Earth’s surface evolution – mountain building, volcanism and earthquakes’ origin – it is important to understand processes at the plate boundaries. However, the processes associated with plate tectonics usually require a significant period of time to result in effects and, therefore, their entire cycles cannot be directly observed in nature by humans. It is a challenge for scientists to study these processes, but also for teachers and science communicators trying to explain them to students and to the general public. To more effectively engage people with these concepts, we developed a mechanical model of plate tectonics which demonstrates the most important processes associated with plate tectonics in real time.
A cross-section of the Earth, showing the sub-surface layers that compose the inner structure of our planet. Credit: USGS

The concept of plate tectonism is usually explained by schematic illustrations which are static and therefore can be hard for the public to imagine the complexity of the processes.

How does the model work?

The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box.

Conclusion and feedback

This mechanical model can be used as a unique outreach tool of geological processes usually taking eons to occur. Thus, students and the general public can understand the most important concept in geology in an easy and entertaining way. The very positive feedback from the audience showed us that we developed a really efficient tool on how to explain this interesting theory.

For many years I have been staring at the most advanced images of the surface of Mars ever taken. I was fascinated by kilometre-sized cones with associated flow-like features and I wondered what they were. Did they form by igneous or mud volcanism, in other words are they formed by magma or by mud? Based on the results of several different analyses I believed that they were the result of igneous volcanism, but I was not sure.

When I read a paper by Raack et al. (2017) describing the novel transport mechanism of sediments by levitation caused by the instability of liquid water in low pressure environments I started to wonder again how the environment would affect the way mud moves on Mars and hence what the resulting mud flows may look like. To satisfy my curiosity I wrote an email to Dr. Jan Raack and asked him a simple question; do you know how mud would behave on the surface of Mars? He did not know and neither did anyone else whom I asked. But he made the best out of the situation. He suggested using the Europlanet society funding scheme to get access to a low pressure chamber situated at the Open University (United Kingdom) and to find out for myself.

I followed his advice and applied. The Europlanet society funding scheme generally gives you a possibility to visit several leading European research facilities for couple of days, but in justified cases longer stays are possible as well. And this was my case. I was aware that my project has been ambitious and therefore time-consuming job. So I applied for one month. And not only for me, but also for my college Ondřej Krýza. There was no way to operate the chamber alone and to document the experiments at the same time…

A few months later I was in the lab of Dr. Manish Patel, playing with mud. He did not care too much how dirty his chamber would get, as long as the experiments had an interesting scientific question to answer. A rare situation… I felt almost like a child again as me and my colleague, as well as the low pressure chamber, were covered in mud all day long. For four weeks we worked long days spending more than 10 hours per day in the lab. A lot of effort, but it was worth it. Even though the first couple days were full of failures, we realized very soon that we were on the verge of an interesting discovery. Even the failures were showing that the mud was behaving in very strange way compared to our everyday experience. It did not flow in the same way as, for example, when we accidentally spilt it over the lab bench or floor – not that this ever happened, of course…

Soon we mastered the experimental setup and we began to understand what we were observing. The mud was boiling as the atmospheric pressure in the chamber was low and soon after when it touched the cold sand it started to freeze because of evaporative cooling. However, the freezing did not occur throughout the entire volume of the mud flow – it only froze at the surface and an icy-muddy crust was formed that protected the liquid mud underneath. We observed that mud movement over a cold surface under low atmospheric pressure in many ways resembled the movement of very mobile terrestrial pahoehoe lavas.

And this shook my world. I suddenly realized that many flow-like features on Mars which I believed to be lava flows based on their appearance might actually be mud flows. Therefore today, I am even less sure if something is mud flow or lava flow on Mars than I was 2 years ago. What a twist! I find myself having to rethink some of my previous interpretations and start again. But this time I am equipped with much better theoretical background, as I know what to expect from the movement of low viscosity mud on Mars. Without the help of Europlanet society, I would never be able to find this out!